Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640880

RESUMEN

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Asunto(s)
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genómica , Productos Agrícolas
3.
Mol Plant ; 15(9): 1457-1469, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35915586

RESUMEN

Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum , Resistencia a la Enfermedad/genética , Genes de Plantas , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/genética , Solanum/genética , Solanum tuberosum/genética
4.
New Phytol ; 235(3): 1179-1195, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491734

RESUMEN

Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.


Asunto(s)
Potyvirus , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Resistencia a la Enfermedad , Potyvirus/fisiología
5.
Nat Plants ; 7(2): 198-208, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33574576

RESUMEN

Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.


Asunto(s)
Mapeo Cromosómico , Clonación Molecular/métodos , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Solanum/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genómica , Fitomejoramiento/métodos
6.
Mol Plant Pathol ; 22(3): 317-333, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389783

RESUMEN

Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Solanum/microbiología , Proteínas Bacterianas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta , Ralstonia solanacearum/patogenicidad , Virulencia
7.
Mol Plant Pathol ; 21(11): 1502-1512, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935441

RESUMEN

Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Polimorfismo Genético/genética , Solanum tuberosum/parasitología , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Muerte Celular , ADN Complementario/genética , Phytophthora infestans/patogenicidad , Solanum/virología , Nicotiana/virología
8.
New Phytol ; 227(5): 1530-1543, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32344448

RESUMEN

Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.


Asunto(s)
Solanum lycopersicum , Solanum , Resistencia a la Enfermedad/genética , Evolución Molecular , Solanum lycopersicum/genética , Proteínas NLR/genética , Filogenia , Fitomejoramiento , Solanum/genética
9.
Plant Physiol ; 183(2): 468-482, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32184345

RESUMEN

Disease resistance genes encoding nucleotide-binding and leucine-rich repeat (NLR) intracellular immune receptor proteins detect pathogens by the presence of pathogen effectors. Plant genomes typically contain hundreds of NLR-encoding genes. The availability of the hexaploid wheat (Triticum aestivum) cultivar Chinese Spring reference genome allows a detailed study of its NLR complement. However, low NLR expression and high intrafamily sequence homology hinder their accurate annotation. Here, we developed NLR-Annotator, a software tool for in silico NLR identification independent of transcript support. Although developed for wheat, we demonstrate the universal applicability of NLR-Annotator across diverse plant taxa. We applied our tool to wheat and combined it with a transcript-validated subset of genes from the reference gene annotation to characterize the structure, phylogeny, and expression profile of the NLR gene family. We detected 3,400 full-length NLR loci, of which 1,560 were confirmed as expressed genes with intact open reading frames. NLRs with integrated domains mostly group in specific subclades. Members of another subclade predominantly locate in close physical proximity to NLRs carrying integrated domains, suggesting a paired helper function. Most NLRs (88%) display low basal expression (in the lower 10 percentile of transcripts). In young leaves subjected to biotic stress, we found up-regulation of 266 of the NLRs To illustrate the utility of our tool for the positional cloning of resistance genes, we estimated the number of NLR genes within the intervals of mapped rust resistance genes. Our study will support the identification of functional resistance genes in wheat to accelerate the breeding and engineering of disease-resistant varieties.


Asunto(s)
Programas Informáticos , Resistencia a la Enfermedad , Genoma de Planta/genética , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/metabolismo , Triticum/microbiología
10.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31397954

RESUMEN

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Asunto(s)
Resistencia a la Enfermedad , Genes de Plantas , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Solanum tuberosum/inmunología , Animales , Áfidos/virología , Cruzamiento , Proteínas NLR/inmunología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente/virología , Solanum tuberosum/virología
11.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442410

RESUMEN

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la Especie
12.
BMC Evol Biol ; 18(1): 93, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29973156

RESUMEN

BACKGROUND: Outbreaks caused by asexual lineages of fungal and oomycete pathogens are a continuing threat to crops, wild animals and natural ecosystems (Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ, Nature 484:186-194, 2012; Kupferschmidt K, Science 337:636-638, 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl MF, Thomma BP, BioEssays 36:335-345, 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Goodwin SB, Cohen BA, Fry WE, Proc Natl Acad Sci USA 91:11591-11595, 1994; Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10:e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, et al. PLoS Pathog 8:e1002940, 2012). However, the dynamics of genome evolution within these clonal lineages have not been determined. The objective of this study was to use a comparative genomics and transcriptomics approach to determine the molecular mechanisms that underpin phenotypic variation within a clonal lineage of P. infestans. RESULTS: Here, we reveal patterns of genomic and gene expression variation within a P. infestans asexual lineage by comparing strains belonging to the South American EC-1 clone that has dominated Andean populations since the 1990s (Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Delgado RA, Monteros-Altamirano AR, Li Y, Visser RGF, van der Lee TAJ, Vosman B, Plant Pathol 62:1081-1088, 2013; Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordonez ME, Fry BA, Doucett K, Fry WE, Phytopathology 87:375-380, 1997; Oyarzun PJ, Pozo A, Ordonez ME, Doucett K, Forbes GA, Phytopathology 88:265-271, 1998). We detected numerous examples of structural variation, nucleotide polymorphisms and loss of heterozygosity within the EC-1 clone. Remarkably, 17 genes are not expressed in one of the two EC-1 isolates despite apparent absence of sequence polymorphisms. Among these, silencing of an effector gene was associated with evasion of disease resistance conferred by a potato immune receptor. CONCLUSIONS: Our findings highlight the molecular changes underpinning the exceptional genetic and phenotypic plasticity associated with host adaptation in a pandemic clonal lineage of a eukaryotic plant pathogen. We observed that the asexual P. infestans lineage EC-1 can exhibit phenotypic plasticity in the absence of apparent genetic mutations resulting in virulence on a potato carrying the Rpi-vnt1.1 gene. Such variant alleles may be epialleles that arose through epigenetic changes in the underlying genes.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Evasión Inmune/genética , Inmunidad/genética , Phytophthora infestans/genética , Enfermedades de las Plantas/inmunología , Polimorfismo Genético , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Regulación de la Expresión Génica , Filogenia , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Virulencia
14.
Theor Appl Genet ; 131(6): 1287-1297, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29560514

RESUMEN

KEY MESSAGE: A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Solanum/genética , Mapeo Cromosómico , ADN de Plantas/genética , Diploidia , Marcadores Genéticos , Phytophthora infestans , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Solanum/microbiología
15.
Methods Mol Biol ; 1659: 215-229, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28856654

RESUMEN

MutRenSeq is a method to clone disease resistance (R) genes in plants. Tips and detailed experimental protocols for the pipeline, including the complexity reduction by R gene targeted enrichment sequencing, and computational analysis based on comparative genomics are provided in this chapter.


Asunto(s)
Clonación Molecular/métodos , Genes de Plantas , Genómica/métodos , Mutación , Enfermedades de las Plantas/genética , Plantas/genética , ADN de Plantas/genética , Resistencia a la Enfermedad , Reacción en Cadena de la Polimerasa/métodos , Programas Informáticos
16.
BMC Genomics ; 18(1): 564, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747151

RESUMEN

BACKGROUND: The Oxford Nanopore Technologies MinION™ sequencer is a small, portable, low cost device that is accessible to labs of all sizes and attractive for in-the-field sequencing experiments. Selective breeding of crops has led to a reduction in genetic diversity, and wild relatives are a key source of new genetic resistance to pathogens, usually via NLR immune receptor-encoding genes. Recent studies have demonstrated how crop NLR repertoires can be targeted for sequencing on Illumina or PacBio (RenSeq) and the specific gene conveying pathogen resistance identified. RESULTS: Sequence yields per MinION run are lower than Illumina, making targeted resequencing an efficient approach. While MinION generates long reads similar to PacBio it doesn't generate the highly accurate multipass consensus reads, which presents downstream bioinformatics challenges. Here we demonstrate how MinION data can be used for RenSeq achieving similar results to the PacBio and how novel NLR gene fusions can be identified via a Nanopore RenSeq pipeline. CONCLUSION: The described library preparation and bioinformatics methods should be applicable to other gene families or any targeted long DNA fragment nanopore sequencing project.


Asunto(s)
Plantas/genética , Plantas/inmunología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia/métodos , Genes de Plantas/genética , Plantas/microbiología
17.
Biotechniques ; 61(6): 315-322, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27938323

RESUMEN

Targeted capture provides an efficient and sensitive means for sequencing specific genomic regions in a high-throughput manner. To date, this method has mostly been used to capture exons from the genome (the exome) using short insert libraries and short-read sequencing technology, enabling the identification of genetic variants or new members of large gene families. Sequencing larger molecules results in the capture of whole genes, including intronic and intergenic sequences that are typically more polymorphic and allow the resolution of the gene structure of homologous genes, which are often clustered together on the chromosome. Here, we describe an improved method for the capture and single-molecule sequencing of DNA molecules as large as 7 kb by means of size selection and optimized PCR conditions. Our approach can be used to capture, sequence, and distinguish between similar members of the NB-LRR gene family-key genes in plant immune systems.


Asunto(s)
ADN/genética , ADN/aislamiento & purificación , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN/análisis , Exones/genética , Biblioteca de Genes , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética
18.
Nat Biotechnol ; 34(6): 656-60, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111721

RESUMEN

Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops.


Asunto(s)
Proteínas Fúngicas/genética , Phytophthora/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Clonación Molecular/métodos , Sistemas de Computación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades de las Plantas/prevención & control
19.
Nat Biotechnol ; 34(6): 652-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111722

RESUMEN

Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.


Asunto(s)
Clonación Molecular/métodos , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Mutagénesis Sitio-Dirigida/métodos , Enfermedades de las Plantas/genética , Plantas/genética , Mejoramiento Genético/métodos , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente/genética , Análisis de Secuencia de ADN/métodos
20.
Front Microbiol ; 6: 811, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300874

RESUMEN

The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...